

Welcome to django-ordered-field’s documentation!

Contents:

	django-ordered-field
	Requires

	Documentation

	Quickstart

	Features

	Limitations

	TODO

	Credits

	Installation

	Usage
	Ordered Field

	Ordered Collection Field

	Update table data

	Other fields updated when order is changed

	Model inheritance

	Abstract model

	Proxy model

	Add signals

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2018-04-28)

django-ordered-field

[image: _images/django-ordered-field.svg]
 [https://badge.fury.io/py/django-ordered-field][image: _images/django-ordered-field1.svg]
 [https://travis-ci.org/kimgea/django-ordered-field][image: _images/badge.svg]
 [https://codecov.io/gh/kimgea/django-ordered-field]A django field to make it easy to order your model instances. If you have made an ordered list and you change the position of the list item instance then all the other list iteminstances belonging to that list has their position automatically updated to keep the list ordered without holes and list items with duplicate positions.
OrderedField field is a global ordering field for the entire table.
OrderedCollectionField order instances with respect to one or more other fields on the instance.

Requires

	python>=3.6

	django>=2.0

Documentation

The full documentation is at https://django-ordered-field.readthedocs.io.

Quickstart

Install django-ordered-field:

pip install git+https://github.com/kimgea/django-ordered-field.git

In your models.py add the field you want OrderedField or OrderedCollectionField:

from django_ordered_field import OrderedField

class YourModel(models.Model):
 name = models.CharField(max_length=100)
 order = OrderedField()

And your ready to go.

Features

	OrderedField will keep correct ordering between all instances in the enire table

	OrderedCollectionField can seperate the table in different collection based on one or more columns and keep order in each collection

	update_auto_now will update all other fields containing auto_now=True with django.utils.timezone.now if it is set to True

	extra_field_updates can be used to update other fields when their order is changed

	self_updates_on_collection_change can be used to update self (current instance) when it changes collection. Setting self_updates_on_collection_change_like_regular to True will make it use the values from the extra_field_updates

Limitations

	Must user model.save(). queryset methods does not work

	Order field cant be unique or in an uniqu_togheter constraint

	After a position has been updated, other members of the collection are updated using a single SQL UPDATE statement, this means the save method of the other instances won’t be called. As a partial work-around use the update_auto_now, extra_field_updates and the self_updates_on_collection_change functionalities.

TODO

	Finish setup.py

	Check project files

	Try to download from git and use in other project

	Register on pip

	Register on django

	Make example project - eh, probably skiping it

Credits

Based on django-positions (it did not work for django 2 at the time):

	django-positions [https://github.com/jpwatts/django-positions]

Tools used in rendering this package:

	Cookiecutter [https://github.com/audreyr/cookiecutter]

	cookiecutter-djangopackage [https://github.com/pydanny/cookiecutter-djangopackage]

Installation

At the command line:

$ easy_install django-ordered-field

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv django-ordered-field
$ pip install django-ordered-field

Usage

Ordered Field

The OrderedField class keeps all the records in the table in order from 0 to count - 1

from django_ordered_field import OrderedField

class Table(models.Model):
 name = models.CharField(max_length=100)
 order = OrderedField()

Ordered Collection Field

The OrderedCollectionField class is used to keep records in order related to another field. This can be used to make structures like ordered lists and so on.

from django_ordered_field import OrderedCollectionField

class Item(models.Model):
 name = models.OrderedCollectionField(max_length=100)
 item_type = models.IntegerField()
 order = OrderedCollectionField(collection='item_type')

A collection can consist of another signle field or it can be a combination of multiple fields

OrderedCollectionField(collection='item_type')
Or
OrderedCollectionField(collection=['list', 'sub_list'])

Update table data

Inserting, updating and deletion of instances has to use methods that uses the model.save() and model.delete() methods. queryset.update(…), queryset.delete() and similar functions that omits model.save() and model.delete() will destroy the ordering of the instances.

Item.objects.create(name="A")
[('A', 0)]
item = Item(name="B")
item.save()
[('A', 0), ('B', 1)]
Item.objects.create(name="C", order=0)
[('C', 0), ('A', 1), ('B', 2)]
item = Item.objects.filer(name='A').first()
item.order = -1
item.save()
[('C', 0), ('B', 1), ('A', 2)]
item = Item.objects.filer(name='A').first()
item.order = 0
item.save()
[('A', 0), ('C', 1), ('B', 2)]
item = Item.objects.filer(name='A').first()
item.delete()
[('C', 0), ('B', 1)]
item = Item.objects.filer(name='B').first()
item.delete()
[('C', 0)]

Other fields updated when order is changed

It is possible to specify other fields than the order field to be automatically updated when a field has its position changed by another field that was inserted/changed/deleted.

The update_auto_now setting will make sure that all date/datetime related fields that are taged to be automatically updated on change will be updated when the order is changed. This setting is default on, so remember to turn ot off if it is not wanted.

OrderedField(update_auto_now=True)

The extra_field_updates is a dictionary and it is used to specify other field to be updated when the order field is changed by anothers position change.

def get_loged_in_user():
 return "KGA"

OrderedField(extra_field_updates={
 'order_changed_count': models.F("order_changed_count") + 1,
 'updated_by': get_loged_in_user
 })

The self_updates_on_collection_change parameter is used to specify fields to be updated when an instance changes collection. Unlike the extra_field_updates which is triggered when a records osition is changed when another field has its position changed the self_updates_on_collection_change works on the active instance and only when it changes collection.

def get_loged_in_user():
 return "KGA"

OrderedField(self_updates_on_collection_change={
 'order_changed_count': models.F("order_changed_count") + 1,
 'updated_by': get_loged_in_user
 })

If self_updates_on_collection_change is the same as extra_field_updates like above then it is also possible to set the self_updates_on_collection_change_like_regular to True to avoid duplicating the settings.

def get_loged_in_user():
 return "KGA"

OrderedField(self_updates_on_collection_change_like_regular=True)

Model inheritance

NB: Remember to manually register the signals by using the add_signals method when using inheritance.

There are two ways to do regular inheritance. The first one is just to add inheritance without doing anything else. By doing this each model that inherit from it has its order related to its own table.

from django_ordered_field import (OrderedField, add_signals_for_inheritance)

class Unit(models.Model):
 name = models.CharField(max_length=100)
 position = OrderedField()

class Video(Unit):
 pass

add_signals_for_inheritance(Unit, Video, "position")

class Audio(Unit):
 pass

add_signals_for_inheritance(Unit, Audio, "position")

Video.objects.create(name="Video")
Quiz.objects.create(name="Audio")
print(list(Unit.objects.all().order_by("position").
 values_list("name", "position")))
[("Video", 0), ("Audio", 0)]

The other method is to use the parent_link_name parameter. This will make the order field use the parrent model for its ordering.

from django_ordered_field import (OrderedField, add_signals_for_inheritance)

class Unit(models.Model):
 name = models.CharField(max_length=100)
 position = OrderedField(parent_link_name='unittwo_ptr')

class Video(Unit):
 pass

add_signals_for_inheritance(Unit, Video, "position")

class Audio(Unit):
 pass

add_signals_for_inheritance(Unit, Audio, "position")

Video.objects.create(name="Video")
Quiz.objects.create(name="Audio")
print(list(Unit.objects.all().order_by("position").
 values_list("name", "position")))
[("Video", 0), ("Audio", 1)]

Abstract model

from django_ordered_field import OrderedField

class CommonInfo(models.Model):
 name = models.CharField(max_length=100)
 position = OrderedField()

 class Meta:
 abstract = True

class Person(CommonInfoTwo):
 description = models.CharField(max_length=100)

Proxy model

NB: Remember to manually register the signals by using the add_signals_for_proxy method when using inheritance.

from django_ordered_field import (OrderedField, add_signals_for_proxy)

class Person(models.Model):
 name = models.CharField(max_length=100)
 position = OrderedField()

class PersonProxy(Person):

 class Meta:
 proxy = True

add_signals_for_proxy(Person, PersonProxy, "position")

Add signals

Current version has a limitation in a few circumstances than one has to mannually register some of the signals. If you use Proxy models or inherit from a model containing a order field then you have to manually register the signals.

Feel free to add a git pull request if you find a way to automatically register thise signals.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/kimgea/django-ordered-field/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

django-ordered-field could always use more documentation, whether as part of the
official django-ordered-field docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/kimgea/django-ordered-field/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-ordered-field for local development.

	Fork the django-ordered-field repo on GitHub.

	Clone your fork locally:

$ git clone https://github.com/kimgea/django-ordered-field.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ virtualenv django-ordered-field-env
$ cd django-ordered-field
$ pip install -r requirements_dev.txt
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ pip install -r requirements_test.txt
$ flake8 django_ordered_field tests
$ python setup.py test
$ tox

The tests are not following pep8, but feel fre to clean them up.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.6 and Django above version 2. Check
https://travis-ci.org/kimgea/django-ordered-field/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python runtests.py tests.lists.tests.ChangeCollectionTest

Credits

Development Lead

	Kim-Georg Aase <kim.georg.aase@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2018-04-28)

	First release on PyPI.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-ordered-field’s documentation!

 		
 django-ordered-field

 		
 Requires

 		
 Documentation

 		
 Quickstart

 		
 Features

 		
 Limitations

 		
 TODO

 		
 Credits

 		
 Installation

 		
 Usage

 		
 Ordered Field

 		
 Ordered Collection Field

 		
 Update table data

 		
 Other fields updated when order is changed

 		
 Model inheritance

 		
 Abstract model

 		
 Proxy model

 		
 Add signals

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2018-04-28)

_static/up-pressed.png

_static/up.png

_static/plus.png

